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THERMAL ANALYSIS OF HEAT PIPE SHELL-FIN STRUCTURES

WITH SELECTIVE COATINGS UNDER RADIATION

Joon Hong Boo

(Received August 18, 1992)

The purpose of this study is to investigate the thermal response of a heat pipe shell-fin structure that is selectively coated and
is subject to uneven radiation from upper and lower sides. Such a structure would arise when fins are attached to opposing sides
of the condenser or evaporator section of heat pipes to enhance the heat transfer performance. Typical examples include radiators
for space applications and solar energy collectors for water heating. The temperature distribution in the circumferential direction
of the heat pipe shell as well as that in the fin is examined via theoretical modeling and numerical analysis. The model accounts
for the effects of selective coatings. Both steady-state and transient solution procedures are presented. Examination of the
steady-state results justifies the use of a thermally-lumped formulation for the heat pipe shell region. The effect of fin width is
investigated as a typical design variable. The fin efficiency and the collector efficiency are also presented as functions of heat pipe
operating temperature and fin widith. The influence of the surface properties on the thermal performance of the heat pipe shell-fin

structure are also examined.

Key Words :
NOMENCLATURE
A . Area, (m?)
b . Thickness of a fin, (m)
Bi . Biot number, dimensionless
c . Specific heat at constant volume, (J/kg-K)
E., : Blackbody emissive power, (W/m?)
Fo : Fourier number
Gr . Irradiation from the sun and space, (W/m?)

Gsun . Irradiation from the sun, (W/m?)

Gspace - Irradiation from the space, (W/m?)

h . Convective heat transfer coefficient, (W/m:K)
k . Thermal conductivity, (W/m-K)

q : Heat flow ; amount of heat transfer, (W)
Q . Heat transfer rate, (W)

r : Radius, (m)

T : Temperature, (K)

VvV . Volume, (m®)

w : Width of the fin, (m)

x : Length in the fin direction, (m)

Greek Symbols 4

a . Thermal diffusivity, (m?/K)

ar . Absorptivity, dimensionless

é : Thickness of heat pipe shell, (m)

4 : Change,

€ . Emissivity, dimensionless

¢ . Thickness-to-radius ratio of heat pipe shell
7 : Efficiency

7] : Dimensionless temperature

& : Dimensioi.iess distance, x/ W
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& : Dimensionless arc length, ».4¢/ W
0 : Density, (kg/m?)

a . Stefan-Boltzmann constant, (5.67 X 1075W/m?-K*)
& : Angle

Superscripts

(n)  : (n)th time step

(r) . (r)th iteration

Subscripts

ores . Reference state

v . Refers to vapor

w . Refers to the liquid-vapor interface
P : Angular direction

o . Ambient surroundings

1. INTRODUCTION

In many engineering applications associated with heat
pipes, a full analysis is complex in nature because three
different phases are present—solid, liquid, and vapor—and
three different heat transfer modes occur—conduction, con-
vection, and radiation. The number of relevant dimensions is
an additional factor that increases the complexity of the
mathematical model. A simplified mathematical model is
thus desired that can help reduce the complexity of the
problem of investigating the thermal response of heat pipe
structures.

The geometry and dimensions of the model in this study are
from the base design of a high-capacity heat pipe radiator
panel presented by Colwell and Hartley(1988) and are de-
scribed in Fig. 1. Since the model structure is exposed to
uneven radiation from upper and lower sides, the temperature
variation in the circumferential direction of the heat pipe
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Fig. 1 Geometry of the heat pipe shell-fin cross-section

shell is of interest. A significant simplification can be
achieved in the solution procedure if the temperature varia-
tion is negligible in the curved heat pipe shell region. A
two-dimensional analysis and numerical methods are em-
ployed to predict the thermal response of the structure. The
procedure presented herein may be applicable to other prob-
lems subject to similar radiation boundary conditions.

The hot vapor flows through the core region of the heat
pipe (» < »,) surrounded by a liquid-saturated wick (r,<r <
7:). The surfaces of the heat pipe shell (»;<#»<#,) and the
fins (0<x< W) are subject to uneven heat exchange. For
space radiators, the upper surface is exposed to soloar radia-
tion and space radiation while the lower surface is exposed
only te space radiation. If a similar geometry is used for a
heat pipe solar collector, the lower surface is usually insulat-
ed (Kanai et al., 1984, Duffie and Beckman, 1980). The heat
pipe shell and the fins are considered to be made of the same
material, typically an aluminum or its alloy the surface of
which is treated to obtain a high emissivity (say 0.8) and a
low absorptivity (say 0.3) for space radiators (Sadunas and
Lehtinen, 1984). Typical values of the emissivity and the
absorptivity of the solar collectors are about 0.2 and 0.9,
respectively (Duffie and Beckman, 1980). The radiation
properties of the surface are assumed uniform over the sur-
face and constant so that they have neither spectral nor
directional dependency.

Since the temperature distribution in the solid materials is
of major concern in this study, the thermal effects of the
vapor and liquid region inside the heat pipe are incorporated
by assuming a bulk temperature of the vapor (7,) and an
overall heat transfer coefficient (/%.) that accounts for the
presence of the liquid-saturated wick. Thus, the radial heat
flow from the vapor to the heat pipe shell (of temperature
Ts) can be calculated by

qzﬁcAc(Tv'_ Ts) (1)

where A, is the heat transfer area per unit axial length (A,
:27”’{).

2. THEORETICAL ANALYSIS

The Biot number based on the eqivalent radiation heat
transfer coefficient, Bi,.4 of the heat pipe shell in the radial
direction and that of the fin in the direction normal to the
surface are both very small (Bi;e<107*). Therefore the

sun

space

Fig. 2 Control volume for the analysis of heat pipe shell cross-
section

temperature differences in these directions are considered
negligible (Ozisik, 1980, Incropera and De Witt, 1990)

For a model geometry similar to the one used in this study,
Sparrow and Cess(1966) examined radiant heat exchange
between the curved pipe surface and the flat fin. Based on
their analysis the model shown in Fig. 1 should have less than
two percent of the overall rate of heat transfer from the fin
affected by the existence of the curved pipe wall. Therefore
the radiant interchange between the fin and the heat pipe
shell surface is considered negligible.

Heat pipe shell :

For a differential element of the heat pipe shell shown in
Fig. 2, an energy balance gives

Qs Qprart (arG’~eE”vT)Af‘*"Yc,r:PCV% (2)

where g, and g,. 4 are conduction heat transfer in the circum-
ferential direction, and ¢, is convection heat transfer into
the control volume (Siegel and Howell], 1981). In the above
equation q, and ¢ are the absorptivity and emissivity, respec-
tively, E.., is the blackbody emissive power, A, is the area
exposed to radiation, 277,44, and V is the volume. G, is
irradiation from the sun and space, i.e.,

Gr= Gsun Sin ¢+ Gspace (3)
where Gs,, is for a surface normal to the sun’s ray and ¢ is 90°
at the top of the curved surface and is 0° at the point where
the fin is attached. Both Gsu, and Ggpace Values can be treated
as knowns. For the radiator, G is considered only on the
upper surface ; for the solar collector, both G, and E,,, are
zero on the bottom surface since it is insulated.

Substitution of the geometrical parameters into Eq. (2)
yields

2 — —_
ko Ll (@G —eoTY Lo+ E L= 0(T,— 7)
. Yo _ é 0T
—-pCS ¥m (1 270 ot (4)

where £ is thermkal conductivity of the shell material, ¢ is
the thickness of the shell, », is the center radius of the shell,
ro—06/2 and ¢ is the Stefan-Boltzmann constant.

T —at —7dd
Trej’ FO— Wz and Er_ W (5)
where ¢ is the thermal diffusivity of shell material, W is the

=
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Fig. 3 Control volume for the analysis of the fin section

width of the fin, and 7., is the reference temperature. Thus
Eq. (4) can be reduced to the dimensionless form

v4 A
%}5‘%— $16- 5:0'+ (516:+ 50) =5 52 (6)
where
§ = (arWZGr/k(STref) (lv 5/2)
Si=(Bi/(8/ W) Q-9 (1—¢/2)
So=(eoTi, W kS) (1—¢/2)

Sa=(1—-¢/2)? (7)
In the above expressions, ¢ is the thickness-to-radius ratio of
the shell (¢=8/r,) and Bi is the Biot number (2.8/k%).

Fin section :

The energy equation for the fin section can be written as
follows considering a control volume depicted in the Fig. 3.
The conservation of energy principle for the control volume
gives

oT

qx_qX7dX+(arG?.f_zeEb,f)Ar p(,V 5! (8)

where ¢, and ¢g.. . are conduction heat transfer into and out
of the control volume. G,,, is the total irradiation onto the fin
surface which can be calculated by

Gr,f = Gsun + ZGspace (9)
for heat pipe radiators (see Fig. 3). For solar collectors,
however, the second term on the right side of Eq. (9) is halved
since the bottom surface of the fin is insulated. Eq.(8) can be
arranged to yield a differential equation for the thermal
behavior of the fin section

2 )

kb%zz;-i— arGr,f—2€GT4={)Cb% (10)

where b is the thickness of the fin.
With the dimensionless variable é=x/W defined in addi-

tion to those of (5), Eq. (10) can be written in dimensionless
form as

S =G0+ Co=‘§FO_ 11)
Coza'rw”zcr,f/kb,fref and Cl=2€OTraef Wz/kb (12)

3. NUMERICAL MODELING PROCEDURE

The finite difference method was used to solve the second-
order nonlinear partial differental equations in this study.
With a forward-time and center-space scheme (Carnahan et

al.,, 1969, Jaluria and Torrance, 1986), Eq. (6) can be written
in difference form as

o 0=+ A0 — 0+ 5) 0.+ 6,

—526j+(55+51€u)J‘"’ (13)
where S,=S,X (r,d¢/L)? for k=0, 1, 2, 3.
Eq. (13) may be simplified further as
07 =M, (814 051) + M 6 — M=0,"" + M
(14)
where
:AFO/Ss M1 1—M0(2+Sx)
MZ:M052 l’V[a Mo(.s +»5 491,) (15)

Eq. (11), for the flat fin section, can also be reduced to a

difference form as
Hj(nﬂ):]vo(aw + (9](?%) + V ew) '9 (n)s 7\/' (16)
where
=adt/(dx)* N=1-2N,
Nz 2e0a T dt/ kb Ns=aya At Gy /kbTrer 17

Nodal configuration for the numerical solution:

Since the relevant Biot numbers are very small, one node
each in the radial direction for the heat pipe shell and in the
direction normal to the surface for the fin is sufficient for the
numerical analysis. The nodal configuration is shown in Fig.
4, which also illustrates the symmetry of the cross-section. An
insulated boundary condition is applied at j=1 and j=NOP
in the heat pipe shell and at j=NNA in the fin. At these
nodes, a central difference yieds, 6;,,=6;_,

Steady-state solution .

For steady state, the right sides of Egs. (6) and of (11) are
zero, and the resultant difference equations for the heat pipe
shell region can be written as

Gi-1— 2+ S1) 65+ 051 — 520} + (So+ 5,16,) =0, (18)
where S,’s are the same as those in (15). Similarly for the fin
section

6;’—1‘2!91"‘“6;'“‘6‘119;*‘(:9:0 (19)
where C,=C,(4€)? for =0 and 1,

The shell node connected to the fin(;=NHP) must be
treated separately since it has a convection boundary at one
side and a conduction boundary at the other side. Radiation is
neglected at this node although a fraction of its surface may
be exposed to radiation if the node size is larger than that
shown in Fig. 4. The finite difference equation at this node is

axis of symmetry

insulated ---;

= Nop

Fig. 4 Nodal configuration of the heat pipe shell-fin model
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Onep 1~ (2+ 51+ Sin) Ovee + Oxup 1+ Simbane 1+ 516.=0
(20)

where

G, - 2bUndd)
S 56+ dx)

The solution strategy for the steady state problem involves
an iteration procedure beacuse of the nonlinear term ¢ in Eqs.
(18) and (19). When applied to each node, Egs. (18) through

(20) result in a set of simultaneous equations of the form
(KoY ={R}" (22)

where [ K] is the coefficient matrix, {4} is the column vector
of unknown dimensionless temperatures and {R} is the col-
umn vector consisting of constants and the nonlinear terms
@*. Superscript(r) denotes the number of iterations. At each
iteration step, the above matrix equation is solved by the LU/
decomposition method (Chapra and Canale, 1989). The con-
vergence criterion for temperature is a dimensionless value of
103,

The bulk temperature of the vapor inside the heat pipe is
assumed to be 20°C and is kept constant. For solar collectors,
however, the vapor temperature inside the heat pipe is
assumed to be 50°C. Thus 7., represents two different val-
ues, 293 K and 323 K, for the solutions of radiators and
collectors, respectively. The overall heat transfer coefficient
between the vapor and the heat pipe wall is assumed to be 3,
000 W/m*K based upon data from technical reports
(Sadunas and Lehtinen, 1984). The same value was used for
the solar collector.

o) (21)

N 2}’0

(1

4. RESULTS AND DISCUSSION

Typical steady-state solutions are shown as dotted lines in
Figs. 5 and 6 for a space radiator and a solar collector,
respectively. The number of nodes in the heat pipe shell is 13
and that in the fin is 15. For the radiator, the values of the
dimensionless parameters in Egs. (7) and (12) are : S,=0.
08146, S,=147.262, 5,=0.06796, S;=0.8403, C,=0.09216, and
C,=0.1483. For the collector, S,==0.08146, S,=147.262, S,=0.

1.000

Heat Pipe Radiator
©v=1.0,£=0.8,0=0.3

0.998 -

A

0.996
0.094 s NOP=13
0.992 -

+  NOP= 1 (Lumped)

0.890 -

0.988

0.886

0.984

0.982

Dimensionless Temperature

0.980 -

0.978

0.976

0.974 T T T T T T T T T T
0.2 o 0.2 04 06 0.8 1

Dimensionless Length, &

Fig. 5 Comparison of the steady-state solutions

06796, S3=0.8403, C,=0.1917, C,=-0.04967, while 5, and Ss
values are the same as for the radiator. The results show that
the difference between the maximum and minimum dimen-
sionless temperatures in the heat pipe shell (<0 in Fig. 5) is
less than 1.3 10°%(0.4 K) for the radiator, and the difference
is less than 2.4 107%(0.8 K) for the solar collector. There-
fore, circumferential temperature variations in the heat pipe
shell may be neglected.

Since the numerical solutions for steady-state temperatures
show that the heat pipe shell is nearly isothermal, the lumped
heat capacity method (Myers, 1971, Incropera and De Witt,
1990) can be employed for the heat pipe shell region to reduce
the computational time. The solution behavior in the curved
shell region, however, depends on the dimensionless coeffi-
cients in Eq. (7). An independent effort is desired in this
respect to identify the valid range of the lumped heat capac-
ity method, in terms of those coefficients which account for
the cases of similar geometries and boundary conditions.
Thus, at the present time the validity of using the lumped
method is limitd to the S,, S, and S, values as specified in
the current study. -

For the finite difference formulation, the lumped node can
be treated as the first node in the fin having a mass and heat
capacity equivalent to the whole heat pipe shell. The energy
balance on the lumped node is

‘\T ;o ’ GSU}'I al ’

“w(%E) e RAUT T+ [ Gy G~ €T |4,

= (,0(,‘ V) zumppd'%tl (23)

where Ay =nro—b, A'c=7x(ro—58) and (pcV) wmpea=

pcnyo6{(1—1(8/2r,)). The first term in Eq. (23) can be ap-
proximated by a forward difference as
,al‘, ~ ¥I£_rl,,

+kb< ox )!umped = kb (8+4dx)/2 (24)

where T is the temperature of the lumped heat pipe shell and

7. is the temperature of the first node in the fin. Then the

dimensionless form of the Eq. (23) is obtained as follows by
an explicit time marching scheme

1.080
Heat Pipe Solar Collector
10701 ev=1.0, £=020=09
O 1.060 A
2
E
8_ 1.050 -
§
-
g 1.040 -
2
[~
K=}
g 1.030
°§ B NOP=13
5 1.020 4 |
+  NOP= 1 (Lumped)
1,010 - '
1.000 T T T T T T T T T T
02 4] 02 04 0.6 [X:] 1

Dimensionless Length, £
Fig. 6 Comparison of the steady-state solutions
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0:7* V= B,0{3+ B16 — B0+ Bs for (=1 (25)
where
Bo,=H\H,
1 (i —_ 2kb
Bi=1 HZ[H‘+hC<ra)] H‘_m’a(6+dx)
2
Bzszeo'Trefs(l‘}%) HZ:A%/;Q

By= il e 22) 60t (L34 Gy (1—.%)](26)

Trzf T
In the Eq. (25), superscripts (») and (#+1) denote previous
and present time steps, respectively.

To avoid poossible instabilities in the numerical solution,
the gird Fourier number, (adt/(4dx)?), has been maintained
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Fig. 7 Transient temperature characteristics of radiator(fv=
1.0, €=0.8, a=0.3)
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Fig. 8 Transient temperature characteristics of solar collector
(6v=1.0 €=0.2, @=0.9)

below (.2 in this study. For steady-state solutions, Eq. (25)
should be modified such that the left side of the equation is set
to zero and the coefficient B, of the second term on the right
side is reduced in value by subtracting 1. The resulting
equation is then divided by H.

The numerical results from the lumped formulation are
shown as solid lines in Figs. 5 and 6 to visualize the difference
from those of the previous sormulation. The the largest
temperature difference observed was about (.12 K, which is
negligible. Based on this observation, the following transient
solutions are based on the lumped formulation.

Transient Solution Procedure :

For the transient analysis of the space radiators, initial

0.230
0.220 1 Heat Pipe Radiator

0.210
0.200 -

¢ ev=1.034
+ Ov=1.0

019071 3§  @v=0.966
0.180 -

0.170 4

0.160 B
8 0150 ,
G 0.140

0.130 .

0.120 1

0.110 A L

01001 . ®

0030 { +
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0.070

0060 +——4—7—T=T T T T T T T T T T 1
0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

W/Wo

Fig. 9 Variation of heat transfer performance of heat pipe radia-
tor
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Fig. 10 Variation of radiator fin efficiency with fin width and
heat pipe operating temperature

T T T T

T T
1.60 1.80 2.00



THERMAL ANALYSIS OF HEAT PIPE SHELL-FIN STRUCTURES --- 167

conditions are given such that the temperature throughout
the heat pipe is the same as the space equivalent temperature
(Sadunas and Lehtinen, 1984) of-40°C. Typical transient
solutions are shown in the Figs. 7 and 8, for which the values
of the dimensionless parameters in Egs. (7) and (12) are the
same as those for steady-state solutions. Fo in the Figures
denote the dimensionless time and Fo=1.0420 corresponds to
a real time of 254.5 seconds. The number of nodes placed in
the fin section (£>(0) is 15 and a lumped node (£<0) repre-
sents the heat pipe shell. As time progresses the transient
temperature profile approaches the steady-state profile that
was predicted by the lumped model and is shown as the top
curves in Figs. 7 and 8.

The thermal performance of the heat pepe shell-fin struc-
ture were examined by varying the fin length, the heat pipe

0.76

0.74 - 5 ©v=097

orz4 L + ©Ov=1.0
or0{ e ° ev=1.03
0.68 - )
0.66 -
0.64 -

0.62 -

Collector Efficiency
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0.54 -

0.82 4

0.50 T T T B — T T T
0.60 0.80 1.00 1.20 1.40 1.80 1.80 2.00

W/ Wo

Fig. 11 Variation of collector efficiency with fin width and heat
pipe operating temperature
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Fig. 12 Influence of surface properties on radiator temperature
profiles

operating temperature, and typical surface properties as-
sociated with the radiation heat transfer. Fig. 9 shows that
the heat transfer performance of the radiator increases with
fin length, although the rate of increase attenuates. In this
Figure, W, is 0.14288 m as appeared in Fig. 1 and @, is
defined as ¢( Try*— T»'), where 7. is 233 K. The heat trans-
fer rates are increased considerably with operating tempera-
ture, @,. For the dimensionless fin width, W/ W,, of 0.7, the
heat transfer, /@, increases by more than 50 percent for
every 3.5 percent increase of 4, from (.966. And for W/
W,=1.75, the heat transfer is increased by 45 percent for
every 3.5 percent increase of 4,.

Figs. 10 and 11 exhibit fin efficiency and collector effi-
ciency variations with fin width and operating temperatures.
The fin efficiency is defined as the ratio of actual to the
maximum possible heat transfer (Incropera and De Witt,
1990) while the collector efficiency is defined as the ratio of
useful energy to the whole incident radiation on the surface
(Duffie and Beckman, 1980). Efficiencies decrease with
increasing fin width . The fin efficiency drops by 31 percent
and collector efficiency drops by 17 percent as W/W, is
increased by 1.4, from 0,7. Efficiencies also decrease with
increasing heat pipe operating temperature. Since the amount
of maximum heat transfer through a fin is proportional to
(Toase— Tw) and Touse is nearly proportional to 75, the effi-
ciency would decrease as 7, increases unless the actual heat
transfer through the fin surface increases at the same rate. On
the other hand, since the amount of useful energy of a collec-
tor is proportional to (7s— T,), the collector efficiency
would decrease as T, increases unless the incident radiation
on the surface increases at the same rate. The effect of
operating temperature is less for the radiator (decrease by 1.
0 percent for every 0.034 (10 K) increase in 4, when W/ W,=
1.) than for the collector (decrease by 4.2 percent for every 0.
031(10 K) increase in §, when W/ W,=1.).

The influence of the surface properties can be observed in
Fig. 12 for the space radiator. As the emissivity-to-
absorptivity ratio increases the temperature profile exhibits
steep slope, which represents higher heat transfer. In dimen-
sional values, heat rejection from the fin is increased from 10.
7 W to 39.4 W (about 3.7 times). As the ¢ to g, ratio increases
from 0.2 to 0.3, (with @,=0.3), the temperature at the tip
of the fin exhibits 0.022(6.5 K) difference while the heat pipe
shell temperature differs only by 2x1073(0.6 K),

5. CONCLUSIONS

(1) From the steady-state analysis the curved heat pipe
shell was proved to be essentially isothermal. This result
suggested that a lumped method can be used to simplify the
mathematical model and to reduce associated computational
expenses.

(2) The numerical results from the lumped capacity model
showed that the predicted temperatures in the fin section
were only about (.12 K higher than the predicted values
obtained with 13 nodes placed in the heat pipe shell region.
However, this small variation had little impact on the ther-
mal performance of the space radiators and solar collectors.
Thus, it is concluded that the two-dimensional model can be
simplified successfully to a one-dimensional model by ther-
mally lumping the curved heat pipe shell.

(3) As time progresses, the transient temperature profile
approaches the steady-state profile, thus exhibited qualita-
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tively correct thermal behavior.

(4) For full analysis including three dimensions in space
and time, i.e., when the temperature variation in the axial
direction (which is normal to the paper in Fig. 1) is also of
interest, the cross-sectional analysis as performed in this
study can simplify associated effort a great deal.

(5) The fin efficiency decreases much rapidly with increas-
ing fin length. As the heat pipe opeating temperature
increases, both fin efficiency and collector efficiency
decrease. In this case, the latter was more sensitive.

(6) The influence of the surface properties on the thermal
performance of the shell-fin structure is very significant.
Thus a proper selective coating technology can greatly
enhance the thermal performance.
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